Software Engineering Institute

Computer Forensics: Results of Live
Response Inquiry vs. Memory Image
Analysis

Cal Waits

Joseph Ayo Akinyele
Richard Nolan

Larry Rogers

August 2008

TECHNICAL NOTE
CMU/SEI-2008-TN-017

CERT Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

Carnegie Mellon

This report was prepared for the

SEI Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2008 Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be directed to permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI reports, please visit the publications section of our website
(http://iwww.sei.cmu.edu/publications).

Table of Contents

Abstract

Introduction

1 Scenario

2 Live Response

3 Volatile Memory Analysis
3.1 Volatility
3.2 PTFinder

4 Analysis

5 Conclusions

References

i | CMU/SEI-2008-TN-017

Vii

11

14

16

19

ii | CMU/SEI-2008-TN-017

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Live response with Sys-Internal tools vs. memory analysis on a static memory dump
Trusted command shell established using HELIX
Results from pslist

Excerpt from ListDLLs output

Excerpt from Handle output

Netstat results

Results of FPort

Results from Volatility pslist command

Volatility dlllist results

Volatility psscan command shows MACSpoof.exe
Volatility connscan resutls

Excerpt of results from Volatility modules option

Results of PTFinder with the “no threads” option
PTFinder graph of threads and processes

Close up of PTFinder graph showing the MACSpoof.exe
Hybrid approach

iii | CMU/SEI-2008-TN-017

10

12
12
13
16

iv | CMU/SEI-2008-TN-017

Abstract

People responsible for computer security incident response and digital forensic examination need
to continually update their skills, tools, and knowledge to keep pace with changing technology.
No longer able to simply unplug a computer and evaluate it later, examiners must know how to
capture an image of the running memory and perform volatile memory analysis using various
tools, such as PsList, ListDLLs, Handle, Netstat, FPort, Userdump, Strings, and PSLoggedOn.
This paper presents a live response scenario and compares various approaches and tools used to
capture and analyze evidence from computer memory.

v | CMU/SEI-2008-TN-017

Vi | CMU/SEI-2008-TN-017

Introduction

It is no longer sufficient when gathering digital evidence to pull the plug and take the machine
back to the lab. As technology continues to change, incident responders and digital forensic
examiners must adopt new methods and tools to keep up. This is applicable especially in
situations such as a live response scenario. For instance, with standard RAM size between two
and eight gigabytes, the migration of malware into memory, and the increasing use of encryption
by adversaries, it is no longer possible to ignore computer memory during an acquisition and
subsequent analysis.

Traditionally, the only useful approach to investigating memory was a live response. This
involved querying the system using API-style tools familiar to most network administrators. The
first responder was looking for rogue connections or mysterious running processes. It was also
possible to capture an image of the running memory, but until recently, short of a string search, it
was difficult to gather useful data from a memory dump. The past few years have seen rapid
development in tools focused exclusively on memory analysis.

This paper is organized into five sections:

Section 1 presents a scenario in which useful evidence can be collected from a running machine.
Section 2 describes a live response approach to the scenario.

Section 3 describes a volatile memory analysis approach to the scenario.

Section 4 discusses the drawbacks of both approaches and discusses which analysis approach
provides a more viable investigation process.

Section 5 presents a conclusion.

vii | CMU/SEI-2008-TN-017

viii | CMU/SEI-2008-TN-017

1 Scenario

S A g
Sys-internal vs. CE S q& S & 3?/; £
Memory Analysis i ,55" ;g g?/ & épb,”' 430 boe./‘
/{,./“ g‘&,-/,- QO//" SP} ¢,¢ “(‘-"] S’F’ "!/ q:b ’ Q:* é? ég(;// cg) . .Voal
rd ,:? £ § s ‘5' &8/ E? *'/‘ (.? E A
S - A A W A - A 4
VAR - R A A N M - -
Live Response
PsList X
ListDLLs X
Handle X
Netstat X1 X
Fport X
Userdump X
Strings X
PsLoggedOn X
Memory Analysis
Volatility X X X1 X X1 X X X X
PTFinder X X

Figure 1: Live response with Sys-Internal tools vs. memory analysis on a static memory dump

The traceability matrix of Figure 1 is a mapping of the capabilities of live response and memory
analysis tools during an investigation of a memory image (or running memory). The Live
Response part of Figure 1 lists the tools used in live response, and the Memory Analysis part
shows tools that analyze physical memory dumps. This section contains hints for creating and
maintaining Word files and suggestions for avoiding common mistakes.

In our virtual environment scenario, we start with a Windows XP Service Pack 2 virtual machine
with an IP address of 192.168.203.132. Netcat was used to establish a telnet connection on port
4444 (PID: 3572) with a second machine at 192.168.203.133. MACSpoof was also installed and
running (PID: 3008). This machine was then compromised by installing the FUTo rootkit and a
ProRat server listening on port 5110. The netcat and MACSpoof processes were then hidden
using the FUTo rootkit.

In the following sections, we present two possible techniques to approach the compromised
system and we discuss what details are visible and invisible concerning the various compromises
using each approach. The first approach we present is a live response process using sys-internal
style tools. The second is a static memory dump analysis using open source memory analysis
tools. Finally, we discuss the benefits and drawbacks of both approaches.

1 | CMU/SEI-2008-TN-017

2 Live Response

The first approach is live response. Here an investigator would first establish a trusted command
shell. In addition, they would establish a method for transmitting and storing the information on a
data collection system of some sort. One option is to redirect the output of the commands on the
compromised system to the data collection system. One popular tool is netcat, a network utility
that transmits data across network connections. Another approach would be to insert a USB drive
and write all query results to that external drive. Finally, investigators would attempt to bolster the
credibility of the tool output in court. During a live interrogation of a system, it is important to
realize that the state of the running machine is not static. This could lead to the same query
producing different results based on when it is run. Therefore, hashing the memory is not
effective. Rather, an investigator could compute a cryptographic checksum of the tool outputs and
make a note of this hash value in the log. This would help dispel any notion that the results had
been altered after the fact. In this exercise, HELIX (a live response and Linux bootable CD), was
used to establish a trusted command shell.

c+ HELIX Forensic Command Shell

Figure 2: Trusted command shell established using HELIX

Once the above data collection setup is complete, an investigator can begin to collect evidence
from the compromised system. The sys-internal style tools used in this exercise are not meant to
be an exhaustive list. Rather, they are representative of the types of tools available. The common
thread for the tools used is that each relies on native API calls to some degree, and thus the results
are filtered through the operating system. The tools used in this case were PsList, ListDLLs,
Handle, Netstat, FPort, Userdump, Strings, and PSLoggedOn.

2 | CMU/SEI-2008-TN-017

Kame Pid Pri Thd Hnd Priv CRU Time Elapzed Time
Idle g a 1 A A 1:45:29.486 B:08 180 .680
Syztem 4 & B4 495 A A:88:52.765 B 68 188 686
EMss gES 11 3 21 163 A:AA 88 . 234 22:25:81 .462
CSrss BRE 13 12 498 2644 A:AR:25.7158 22:25:808.274
winlogon 638 13 19 Ré4 7TES A:AA:A5.954 22:27:89.274
services 724 9 16 361 3996 A8z 186,954 22:127:57.883
lsoss TI09 19 344 37EE A:88:82.893 222787712
wvmacthlp g9 8 1 24 T4 A:AA 88 .893 22:27:56.446
svchost 1z & 17 194 3668 A:AA 80 515 22:127:B6,133
avchost 116 & 11 283 1894 A:AA:A1.125 22:27:83.618
svchost 1112 & 71 1382 14516 A:AA:19.325 22:27:52.899
svchost 1168 & 6 81 1292 A:88:81.189 22:27:52.605
svchost 1385 & 15 21k 1745 A 88 88 . 295 22:27:52.255
ccSetMgr 1RA8 & & 183 4B84A A:AA 86 593 22:27:5A8,915
ccEvtMgr 1Rz & 1R 286 4Z22A A:AA 188 . 6A0 22:27:5A,196
SPEECSve 1648 & 14 239 4183 A:AA:A1.2581 22:27:49.871
spoo sy 17ve & 11 11s 3525 A 8088359 22:127:149.274
Rtwvscan 643 & Bl B79 ERRSTZ A:88 58 .657 22:27:42.365
YMwareService 1224 13 3 Ba 1894 A:AA 86 .465 22:27:48.415
explorer 2468 & 11 425 14392 A:A1:15.6R6 2212639 665
WMwareTray 2616 8 1 27 764 A B[80 . 256 22:126:34 602
YHwarellser 2632 & 3 184 2212 A:88:84.375 22126134477
coApp 2648 5 9 248 4264 A:88:88 551 22:26:34.438
wuauc Lt 72 85 3 164 2183 A:AA 88 . 359 22:126:23.821
cmd /4 5 1 3 2A36 AzAA 188 . 796 22:25:19.29A
cmd e &8 1 3 2824 A:AA 80 251 1:43:51.489
services 344 5 3 85 15863 A:81:54.862 B:59:25.329
cmd ¥}|/le & 1 I 1996 A:88:88.189 B:14:52.154
helix 3|72 8 09 289 21496 A:AA:18.796 B:A6:48.437
cmd 1896 & 1 3 2824 A:AE:E8.171 B:61:12.678
pslizt 38RE 13 2 82 1188 A:AA 88 375 B:0R:A5.781

Figure 3: Results from pslist

PsL.ist allows investigators to view process and thread statistics on a system. Applying PsList
reveals all running processes on the system but does not reveal the presence of the rootkit or the
other processes that the rootkit has hidden (netcat and MACSpoof).

3 | CMU/SEI-2008-TN-017

ListDLLs v2.25 - DLL lister for Win9x/NT
Copyright {Ch 1997-2684 Mark Russinovich
Svzinternals - www.svsinternals.cam

Swstem pid: 4
Command line: =ho command line=

=mEs.exe pid: 685
Cammand Lline: “SwstemRoot\System3Zisnss .exe

Basze Size Version Path
Bx435080A0 OxfAEE “WivztemRoot WSwvsten32hanes cexe
Bx7cORABEA BxbPEAR 5,01 ,.2688.2188 C:WINDOWS\swstem32wntdll.dll

czrzs.exe pid: 666

Command Lline: C:WWINDOWS\zystem3Zhcsrss.exe Ohjecthirectory="Windows
Shared3ection=1824,3877 512 Windows=0n SubSystemType=Windows ServerDll=basesrv,1

ServerDl l=winsrv:UserServerDl lInitialization,3 ServerDll=winzrv:ConServerDllInitialization,2
FrofileControl=0ff MaxRequestThreads=16

Eaze Size Version Fath

Bxd4a658008 BxRA8E STENC WINDOWS vevstendZ oSt ss L exe
Ax7FcOfAEEA BxbAEAR 5.61.2688.2180 C:WINDOWS\swstem32wntdll.dll
Ax7Eb4AREA BxbAAA B.A1.7608.2150 C:\WINDOWS\=vstem3Z\CIRSEY .dLL
Ax7EbEABEA Bx1PBAB 5.61.2088.2188 C:WINDOWSAswstem32hwbosesrw.dll
Ax7EbEABEA Bx4bBAE 5.61.2688.3103 C:WINDOWS\system32wwinsrv.dll
Bx7TF1AE8A Bx47800 5.01.2688.3316 C:WWINDOWS\system32M\GDIZZ2.d1L

LITRIC O PR T ol ol =11 | ol B = N W

PR T Y T e T R S o T T} T B T Y I W

Figure 4: Excerpt from ListDLLs output

ListDLLs allows investigators to view the currently loaded DLLs for a process. Applying
ListDLLs reveals the DLLs loaded by all running processes. However, since there are processes
that are hidden, ListDLLs cannot show the DLLs loaded for them. Thus, critical evidence that
could reveal the presence of the rootkit is missed. The problem is that an attacker may have
compromised the Windows API upon which an investigator’s toolkit depends. To a degree, this is
the case with our scenario. As a result, rootkit manipulation cannot be easily detected with these
tools. A more sophisticated and non-intrusive approach is necessary to find what could be critical
evidence.

Lo F1IE (FEW-1 [P | WL) T [O (o o e]

cmd.exe pid: 3548 USER-DESZAZATAS\Adminiztrator
E4: File {RW-) CrWWINDOWSMWinSxS\x86_Microsoft.Windows.Common-Controls_ 6595k
24: Section “BozeMamedOb jectz\ShimSharedMemory
83: File (RW-3 Cidvtoolshwhcllint

chmd.exe pid: 3796 USER-DEEZBZATAI\Adminiztrator
B4: File (RW-) CoWWINDOWSWWinSxSwx8o_Microsoft.Windows.Common-Controls_ 65950
78: File (RW-3 CidvtoolsFUTo_enhancedsFUTo_enhanced WFUToMEXE
g4: Section “BazeNamedOb jectz \ShimSharedMemory

Figure 5: Excerpt from Handle output

4 | CMU/SEI-2008-TN-017

The Handle utility allows investigators to view open handles for any process. It reveals the open
files for all the running processes, which includes the path to the file. In this case, one of the
command shells is running from a directory labeled .. \FUTO\EXE. This is a strong hint of the
presence of the FUTo rootkit. Similarly, there is another instance of cmd.exe running from
C:\tools\nclint. The ncllnt folder is a default for the windows distribution of netcat. While it is
useful to show the implications of the tool results, it is important to remember that simply
renaming these directories or running the cmd.exe from a different directory would have
prevented these disclosures.

Active Connections

Proto Local Address Foreign Address State

TCP A.8.68.8:13535 B.0.8.8:8 LISTEMING
TCP A.6.68.8:445 B.0.8.8:8 LISTEMING
TCP A.8.8.8:5112 B.0.8.8:8 LISTEMING
TCP A.8.68.8:5757 A.0.0.8:8 LISTEMING
TCP A.0.68.68:51188 A.0.0.8:8 LISTEMING
TCP 127.8.8.1:1833 A.0.0.8:8 LISTEMING
TCP 192 .168.203.132:139 A.0.0.8:8 LISTEMING
uoP A.8.68,.8:445 ¥k

oP A.6.68.8:5608 ¥k

oP A.68.68.8:1826 ¥k

oP A.68.68.8:1854 ¥k

oP A.68.68.8:4568 ¥k

LDP 127.8.8.1:123 ¥k

LDP 127.8.8.1 1984 ¥k

LDP 192 .168.203.132:123 ¥k

LDP 192 .168.203.132:137 ¥k

UoP 192 168 .203.132:155 ¥k

oP 192 .168.203.132:1988 *:%

Figure 6: Netstat results

The Netstat utility allows investigators to view the network connections of a running machine.
Nestat (with the —an option) reveals nothing immediately suspicious in this case.

5 | CMU/SEI-2008-TN-017

Copyright 2808 by Foundstone, Inc.
httprs A, foundstone .cam

Pid Process Port Proto Path

1816 -= 135 TCP

4 Svstem -= 139 TCFP

4 Sweten -= 445 TCFP

2648 cochpp -» 1833 TCP C:WProgram FilesCommon Filesi\Syvmaontec Shared\cchpp.exe
A Swetem -»= 1138 TCP

3144 =zervices - Bl112 TCP C:WINDOWS‘\zervices.exe

3144 services -= B7EY TCP CoWINDOWS'.zerwvices.exe

3144 =zervices -» Bi188 TCP C:AWINDOWS\zervices.exe

4] Svstem -= 123 UDP

2648 cochpp -= 123 UDP C:“Program FilesCommon Files\Svmontec Shared\ccApp.exe
4] Svstem -= 137 UDP

4] Sweten -= 138 UDP

1816 -= 445 UDP

4 Sweten -» BBa UDP

3144 =zervices -= 18Ze UDP C:WWINDOWS‘\.zerwvices.exe

3144 =zervices -= 1854 UDP C:WWINDOWS‘\.zerwvices.exe

A Swetem -»= 1988 UDP

3144 services ->= 4888 UDP C:WINDOWS'\zerwvices.exe

Figure 7: Results of FPort

FPort allows investigators to view all open TCP/IP and UDP ports and maps them to each
process, which includes the PID and the executable path. In our scenario, FPort does not reveal
the presence of the connections hidden by the rootkit.

Userdump allows investigators to extract the memory dumps of running processes for offline
analysis. Since it has a specific meta-data format, dumpchk.exe
(http://support.microsoft.com/kb/315271) is normally used to verify that a usable process memory
dump was produced. The Strings utility extracts ASCIl and UNICODE characters from binary
files. In this case, an investigator would apply it to the process dumps and see what evidence can
be uncovered.

Finally, PsLoggedOn helps investigators discover users who have logged in both locally and
remotely. In this case, only the Administrator is logged on.

6 | CMU/SEI-2008-TN-017

3 Volatile Memory Analysis

The second approach is volatile memory image analysis. It is similar to live response, in that an
investigator would first establish a trusted command shell. Then they would establish a data
collection system and a method for transmitting the data. However, an investigator would only
acquire a physical memory dump of the compromised system and transmit it to the data collection
system for analysis. In this case VMware allows investigators to simply suspend the virtual
machine and use the .vmem file as a memory image. As established in digital forensic practices,
an investigator would also compute the hash upon completion of the memory capture. Unlike
traditional hard drive forensics, no hash is calculated for memory before acquisition. Due to the
volatile nature of running memory, the imaging process is taking a snapshot of a “moving target.”

The primary difference between this approach and Live Response is that no additional evidence is
needed on the compromised system. Therefore, the evidence can be analyzed on the collection
system.

As seen in Figure 1, we discuss the capabilities of two memory analysis tools applied on the
memory image. We also describe what evidence is visible to an investigator in this type of
analysis. The tools used are The Volatility Framework by Volatile Systems and PTFinder by
Andreas Schuster. The capabilities of each tool are discussed as well as the information it extracts
from memory dumps. These tools are recent additions to the excellent array of open source
resources available to digital investigators. There are other memory analysis tools not included in
this comparison.

3.1 VOLATILITY

The Volatility Framework is a collection of command-line python script that analyzes Windows
XP Service Pack 2 memory images. It allows an investigator to interrogate the image in a style
similar to that used during a live response. Volatility is distributed under a GNU General Public
License. For this exercise version 1.1.2 was used. It allows an investigator to interrogate the
image in a style similar to that used during a live response. Commands available in the 1.1.2
version include ident, datetime, pslist, psscan, thrdscan, dl11ist, modules,
sockets, sockscan, connections, connscan, vadinfo, vaddump, and vadwal k.
Several of the commands used during the exercise are explained below.

Using the syntax python volatility ident -f WinXP_victim.vmemand python
volatility datetime -f WinXP_victim.vmem, the ident and datetime commands
are used to gather information about the image itself (in this case the image used was the
WinXP_victim.vmem file). The first provides the operating system type, virtual address

7 | CMU/SEI-2008-TN-017

translation mechanism, and a starting directory table base (DTB), while the second reports the
date and time the image was captured. This provides valuable information because it assists with
documentation purposes in a digital investigation. Furthermore, it is useful for creating a timeline
of events with other pieces of evidence in the digital investigation.

Mame Pid PPid Thds Hndz Time

Swstem 4 a ER 485 Thu Jon B1 B8:8E:68 1978
IMSS LExE oaa 4 3 21 Wed Jul B9 21:36:12 26083
CSYS3.ExXe (il GaEg 12 473 Wed Jul B9 21:36:13 26083
winlogon.exe [atald] GaEg 19 515 Wed Jul B9 21:36:14 26083
zEFVices.exe 724 [Tals) 16 363 Wed Jul B9 21:36:15 2683
lzass.exe 736 [Tals) 13 343 Wed Jul B9 21:36:16 26083
vmacthlp.exe 596 724 1 24 Wed Jul B9 21:36:17 2683
zvchost exe o1z 724 16 19z Wed Jul B9 21:36:17 2885
zvchost .exe 1816 724 9 278 Wed Jul B9 21:36:28 2885
zvchost (exe 1112 724 75 1323 Wed Jul B9 21:36:28 2885
zvchost (exe 1168 724 5] g1 Wed Jul B89 21:36:21 2683
zvchost .exe 1388 724 15 212 Wed Jul B9 21:36:21 26083
cocoetMar .exe 1588 724 7 198 Wed Jul B9 21:36:22 2083
ccEviMar .exe 1562 724 16 288 Wed Jul B9 21:36:23 2083
SPEECSwC .exe 1648 724 15 243 Wed Jul B9 21:36:24 2083
zpoo lav . exe 1Me 724 11 116 Wed Jul B9 21:36:24 2083
Rtwvzocan.exe &4 724 L ESl Wed Jul B9 21:36:31 2685
VHwareService.e 1224 724 3 =1 Wed Jul B9 21:36:33 2885
explorer.exe 2465 2392 13 B4 Wed Jul B9 21:37:34 2683
VHwareTrawy .exe 2616 2468 1 27 Wed Jul B9 21:37:39 2683
VMuarellser .exe 2632 2468 4 156 Wed Jul B89 21:37:39 2683
cochpp.exe 2648 2468 1A 242 Wed Jul B89 21:37:39 2683
wuauc Lt .exe |2 1112 4 166 Wed Jul B9 21:37:49 2083
cmd .exe 3548 2468 1 31 Wed Jul B9 21:35:54 2083
cmd . exe 3Me e 1 3l Thu Jul 18 19:88:22 2683
zEFVices.exe 3144 3132 3 iy Thu Jul 18 19:84:43 26083
cmd . exe Jg8le 2408 1 a1 Thu Jul 18 19:49:21 2683
cmd .exe 2832 1224 B -1 Thu Jul 16 19:82:21 2683

Figure 8: Results from Volatility pslist command

Using the pslist command produces results similar to Sysinternal pslist.exe tool used during
the live response.

8 | CMU/SEI-2008-TN-017

Swstem pid: 4

Unable to read PEE for task.

o 8 8 e L e i 2 e 2 R T e i R
amss.exe pid: oES

Command line @ “SwystemRoot\SvstemdZhemnss.exe

Bose Size Path
Ax45E58008 AxfEE8 wWivstemRoot\Syesten32\amss .exe
Ax7CcO0EEAD BxbABAE CnWINDOWS avstem32wntdl L .dLL

B R S e e R 2 R R R e e S e e
carzs.exe pid: 666

Commond line @ CoAWINDDWS'\zwstem3z2\csrsz.exe ObjectDirectorv="Windows SharedSq
ServerDl l=winsrv:UzerServerDllInitialization,3 ServerDll=winsrv:ConServerD LIy

Bosze Size Path

Ax4qcs8ERE AxEEEA WAL D WINDOW S vavsten3Zhosres .exe
Ax7CcO0EEAD BxbABAE CnWINDOWS avstem32wntdl L .dLL
Ax7Rb4AEAE BxbADA C W INDOWSeystem32WCSRIRY . dL L
Ax7EbEEERE Ax166A88 CoAWINDOWSsysten32vbazesyv . dl L
Ax7RbEABAE Bx4bBAE CoWINDOWShevstem32winsry . dlL
BxT7f 18080 Bx47080 CoMWINDOWShavstem32NGDI52 AL

Figure 9: Volatility dlllist results

This is also the case with the dI Il ist command. This option shows the size and path to all the
DLLs used by each running process.

9 | CMU/SEI-2008-TN-017

Fast

Na. PID Time creqted Time exited Of f=et FDE Remarks
1 5] BxBEEELASA AxAE31ia888 Idle
2 3516 Thu Jul 18 19:49:21 2865 BxElf4ed2A Bx10548208 cnd . exe
3 3548 Wed Jul 89 21:35:54 2803 BxB1fbzEed Bxlab48488 cmd.exe
4 3872 Wed Jul B9 21:37:49 28035 BxBlfdbEbA Bx1a54835328 wuauc Lt .exe
§ 3144 Thu Jul 1A 19:84:45 2AAS AxAlferA2A AxlaRd48468 zervices.exe
& 2616 Wed Jul 89 21:37:39 2863 BxB2EREE28 Bxlab4B188 YMwareTray .exe
7 645 Wed Jul B9 Z21:36:31 20835 FxBZEf cdal Ax1a548248 REivscan.exe
g 724 Wed Jul B9 21:36:15 2885 BxE217bEaS BxlaR48058 services ..exe
9 17E Wed Jul B9 21:36:24 2863 BxB21 90008 Bx1ab48208 spoolsy . exe
18 1168 Wed Jul A9 21:56:21 -A85 AxAZ106990 AxlaR4d168 svchost .exe
11 1RBS Wed Jul B89 21:36:22 2883 BxB21a9828 Bxlab48ia8 coSetMar .exe
12 26832 Thu Jul 18 19:52:21 2685 Thu Jul 18 19:52:22 28853 Bx021d0355 Bx1lo548220 cmd.exe
13 2632 Wed Jul B9 21:37:39 885 BxE2149300 Bx1a5483568 VMwarellser .exe
14 2648 Wed Jul B89 21:37:39 28683 BxB21f ddal Bx1a548338 codpp .exe
15 736 Wed Jul B9 21:536:16 ZAAS AxAZ3R0A2A AxlaR48Ral L=ass.exe
16 2468 Wed Jul 89 21:37:34 2883 BxB235e7hE Bxlab48348 explorer .exe
17 AREZ Wed Jul 89 21:36:23 2885 BxAz3eddal Bxlab4Eich cocEvtMar .exe
18 1648 Wed Jul 89 21:36:24 2083 BxBE237 908 Bx1laE481ed SPEBCSvwC .exe
19 E56 Wed Jul B9 21:36:13 2883 BxB2481c03 Axlab48848 csrss.exe
2A 638 Wed Jul B9 21:36:14 2885 BxAz4205F0 Bxlab4E068 winlogon.exe
21 15858 Wed Jul B9 21:56:21 2885 BxB24205585 Bx1a5481588 svchost .exe
22 1117 Wed Jul 89 21:36:28 2883 Bxb242chid Ax1a548148 svchost .exe
23 1RlA Wed Jul B9 21:36:28 2R3 BxA2436b1A Axlab4A12A svchost . exe
24 o912 Wed Jul B9 21:36:17 2883 BxB2432258 Bxlab4B8eR svehost .exe
25 1224 Wed Jul B89 21:36:353 2085 FxE2455da8 Ax1a548268 YMwareService.e
26 396 Thu Jul 18 19:88:22 2883 BxE2490178 Bxlab482el cmd . exe
27 895 Wed Jul 89 21:36:17 2885 BxAz4abtald Bxlab4abca vmacthlp . exe
28 B Thu Jul 18 15:59:55 28A3 BxA24fhAZA BAxlab4Azch MACSpoof (exe
29 BES Wed Jul B9 21:36:12 2883 BxB2ETE405 Bx1ab4BE28 smes . exe
38 4 FxBZRCcSE58 AxAE31ia888 System

Figure 10: Volatility psscan command shows MACSpoof.exe

However, when we use the psscan option something new is revealed. With a PID of 0
MACSpoof.exe shows up in the list. This command scans for, and returns, the physical address
space for the all EPROCESS objects found.

Local Address Femote Address Pid
127.8.8.1:14114 127.8.8.1:1833 J144
192.1658.203.132 16876 G 236,22 281 80 10R4
192 . 168.203.132 = 4444 192 . 168.203.133:: 2867 JR7E
127.8.8.1:1833 127.8.8.1:14114 2644
Figure 11: Volatility connscan resutls

While netstat failed to provide any sign of the netcat activity, using connscan shows us the
connection with 192.168.203.133 on port 4444, The results also indicate a PID of 3572 associated
with this connection. The fact that this PID is missing from the other queries could indicate the
presence of a rootkit.

10 | CMU/SEI-2008-TN-017

MName Baze

SWINDOWS Sevsten32vntkrnlpa.exe BxE84d7888

SWINDOWS Sevstem32shal .dLL Bx5B6cenan

SWINDOWS Ssvsten325KDCOM . DLL BxfEb9aBaa

WMWINDOWS veysten32WB0OTVID . dALL B:xf SaaaBaR

ACPI .svs BxfEbebBaa

SWINDOWS Sevsten325\DRIVERSWWMILIE .SYS BxfEb9cBan

wIvatenRoot vavstemI2 \DRIVERSSWUSESTOR (5Y3 BxfEa90888

“WiwvstemRoot ssvstem3z2\driversikmixer .svs BxfRYaoBea

WAL istoo lzsFUTo_enhanced FUTo_enhanced FUToMEXEMmedirectx.svs BxfEbBbBEE

Figure 12: Excerpt of results from Volatility modules option

The Volatility Framework also allows an investigator to list all the kernel modules loaded at the
time the memory image was captured. While the path of the last entry from the modules
command certainly attracts attention, an even less obvious path would show the msdirectx.sys. A
simple Google search will show this module is associated with rootkits.

The Volatility Framework provided evidence about the attacker’s IP address and the connections
to the system. In addition, it provided some leads in terms of the possibility of a rootkit and
hidden process being present.

NOTE:

After this article was written a new version, Volatility 1.3, was released. Volatility now supports
Windows XP SP2 and SP3 as well as Linux operating systems. Several new modules have also
been added, increasing the capabilities of the framework significantly.

3.2 PTFINDER

The second memory analysis tool, PTFinder, is a Perl script that supports analysis of Windows
2000/2003/XP/XP SP2 operating system versions. PTFinder enumerates processes and threads in
a memory dump. PTFinder uses a brute force approach to enumerating the processes and uses
various rules to determine whether the information is either a legitimate process or just bytes.
Although this tool does not reveal anything new in terms of malware, it does reflect a benefit of
volatile memory analysis, which is repeatability of the results.

11 | CMU/SEI-2008-TN-017

ND. Twpe FPID TID Time created Time exited Offzet CR3 Remarks
1 Proc a BxAARR145A AxAPSLlaeAs Idle
2 Proc 3816 ZAA3-B7-18 19:49:21 BxB1f4elzd Bxlob4B2a8 cnd.exe
3 Proc 3548 2BR2-A7-A9 21:38:54 BxA1fb2Eed Bxlob48488 cnd.exe
4 Proc 3872 ZBE5-A7-A9 21:3537:49 BxB1fdbEbA Bx10548328 wuauclt .exe
B Proc 3144 ZAA3-B7-10 19:54:48 BxBifefB28 BxloB4P468 services.exe
6 Proc 2616 ZBE5-87-09 21:37:39 BxB2A56828 BxloB4B0188 YHwareTray .exe
7 Proc 645 ZBE5-A7-A9 21:3536:31 BxBZAfcdal Bx1o54B8248 Rtwvscan.exe
& Proc 724 28E3-87-09 21:36:15 BxB217bEad BxloB4BE88 services .exe
9 Proc 1716 ZBE5-87-09 21:36:24 BxB2198dal Bx1o54B8288 spoolsy.exe
18 Proc 1168 ZARAG-A7-A9 21:36:21 BxA2106998 Axloh4a1l68 svchost . exe
11 Proc 1BAS 2BE3-87-09 21:36:22 BxB2109828 Bxlob4B1la8 ccSetMgr .exe
12 Proc 2@32 ZAAS-AT-18 19:52:21 2805-A7-18 19:52:22 BxPA21dA355 Ax1loR48Z28 cmd.exe
13 Proc 2632 ZARG-A7-A9 21:37:39 BxA21d9308 AxloR48368 YHwarelser .exe
14 Proc 2648 28E3-87-09 21:37:39 BxB21fddal Bx1oB4B8388 coApp.exe
15 Proc 736 ZBB5-87-09 21:36:16 BxBZ2350828 Bx10540808 lsass.exe
16 Proc 2468 2883-87-09 21:37:34 BxB235e7hl Bxlob4B0348 explorer.exe
17 Proc 1BEZ ZBE3-87-09 21:36:23 BxB23eddal BxloB4B81lch ccEviMgr .exe
15 Proc 1648 ZARS-AT7-A9 21:36:24 BxA23fd908 Axlo548led SPEECSvC.exe
19 Proc 656 ZARG-A7-A9 21:36:13 BxA2481cA5 Ax1lob48848 carss.exe
28 Proc [=t215] ZBE3-87-09 21:36:14 BxB24205T8 Bx1loB4BAEE winlogon.exe
21 Proc 1385 ZBE5-A7-A9 21:3536:21 BxBZ24208588 Bx1ob4B188 svchost .exe
22 Proc 1112 ZAA3-B7-A9 21:36:28 BxB242chbAd Bxlob4B8148 svchost .exe
23 Proc 1816 ZBE3-87-09 21:36:28 BxB2436b18 Bx1oE4B8128 svchost .exe
24 Proc 912 ZBE5-A7-A9 21:3536:17 BxBZ24353e250 Bx105408el svchost .exe
25 Proc 1224 ZAA3-B7-A9 21:36:33 BxB24553dal Bx1oB4B8268 VMwareService.e
26 Proc 3796 ZEAS-AT-18 19:808:22 BxA2498178 Axlob482ed cnd.exe
27 Proc 596 ZARS-A7-A9 21:36:17 BxA2405605 AxloR488c8 vmacthlp.exe
28 Proc 5] 28A2-A7-18 13:F9:5F BxB24fbEZA Axlob4B2c8 MACSpoof .exe
29 Proc 6AS ZBE5-87-09 21:36:12 BxBZE75405 Bx10B408208 snss.exe
38 Proc 4 BxBZ2EC3830 BxEE31a88E8 Syatem

Figure 13: Results of PTFinder with the “no threads” option

The “no threads” option on PTFinder gives us a list of processes found in the memory dump.
Notice the MACSpoof.exe near the bottom of the list with a PID of 0.

&

o

Figure 14:

12 | CMU/SEI-2008-TN-017

PTFinder graph of threads and processes

2468
file ofs
0x235e7bl
explorer.exe
started
2008-07-09
21:37:34
running
0 3816 3540 2616
file ofs file ofs file ofs file ofs
O0x24fb020 0x1f4e020 0x1fb25e0 0x2056020
MACSpoof .exe cmd .exe cmd exe VMwareTray exe
started started started started
2008-07-10 2008-07-10 2008-07-09 2008-07-09
18:59:55 19:49:21 21:38:54 21:37:39
running running running running

Figure 15: Close up of PTFinder graph showing the MACSpoof.exe

PTFinder also has the ability to output results in the dot(1) format. This is an open source graphics
language that provides a visual representation of the relationships between threads and processes.
(These relationships are shown in full in Figure 14 and close up in Figure 15.)

13 | CMU/SEI-2008-TN-017

4 Analysis

Thus far, we have described two different incident response approaches to the scenario discussed
in Section 1.2. The first approach is the well-known live response where an investigator surveys
the crime scene, collects the evidence, and at the same time probes for suspicious activity. The
second approach is the relatively new field of volatile memory analysis where an investigator
collects the memory dump and performs analysis in an isolated environment. In both approaches,
we described what types of information gave an investigator insight into the scenario. Now, we
will discuss some of the issues with live response that hinder effective analysis of a digital crime
scene. We will also discuss why volatile memory analysis should be the ideal approach to
investigating cyber crime.

While the purpose of live response is to collect all relevant evidence from the system that will
likely be used to confirm whether an incident occurred, the implementation of the process has
significant setbacks, including the following:

e First Responder toolkit may rely on Windows API: The problem is that if an attacker
compromises the system and changes system files without an investigator suspecting, then an
investigator could collect a large amount of evidence that is based on compromised sources.
As a result, this would damage the credibility of the analysis in a court of law.

e Live response is not repeatable: The information in memory is volatile and with every passing
second, bytes are being overwritten. As we saw in our scenario, the tools may produce the
correct output and in themselves can be verified by a third-party expert. However, the input
data supplied to them can never be reproduced. As a result, this puts the evidence collected at
risk in a court of law. Therefore, it becomes difficult for investigators to prove the correctness
of their analysis of the evidence. [Walters 2007].

e Investigators cannot ask new questions later: The live response process does not support
examination of the evidence in a new way. This is mainly because the same inputs to the tools
from the collection phase cannot be reproduced. As a result, investigators cannot ask new
questions later on in the analysis phase of the investigation [Walters 2007]. By the analysis
phase, it becomes impossible to learn anything new about the compromise. In addition, as we
saw in our scenario, once critical evidence is missed during collection, it can never be
recovered again. It damages the case against the attacker.

On the other hand, a volatile memory analysis shows promise in that the only source of evidence
is the physical memory dump. Moreover, collection of physical memory has become more
commonly practiced. An investigator can then build the case by analyzing the memory dump in
an isolated environment that is non-obtrusive to the evidence. Thus, volatile memory analysis
addresses the drawbacks facing live response as follows:

14 | CMU/SEI-2008-TN-017

e It limits impact to the compromised system: Unlike live response, memory analysis uses a
simplified approach to investigating a crime scene. It involves merely extracting the memory
dump and minimizes the fingerprint left on the compromised system. In addition, the nature
of live response puts the analysis of the evidence at risk in a court of law. As a result, an
investigator gets the added benefit of analyzing the memory dump fully confident that the
impact to the data is minimal.

e Analysis is repeatable: Since the memory dumps are analyzed directly and in isolated
environments, this allows for multiple sources to validate and repeat the analysis. We saw this
in our scenario, where the hidden malware processes were identified by the two tools. In
addition, it allows for conclusions made by investigators to be verified by third-party experts.
Essentially, it improves the credibility of the analysis in a court of law.

o Nature of analysis supports asking new questions later: Contrary to live response, memory
analysis allows investigators with more expertise, technique, or understanding to ask new
questions later on in the investigation [Walters 2007]. We saw this in our scenario. Our initial
analysis of the memory dump with Volatility gave us some suspicion of a rootkit being
present on the system. We later confirmed this with evidence of the terminated rootkit process
using the Lsproc script. This important evidence may have been missed in a live response.

One of the greatest drawbacks with volatile memory analysis is that the tools’ support has not
matured enough. This is because with every release of a new operating system, the physical
memory structure changes. Development of memory analysis tools has been gaining velocity
recently, but the kinks still remain. This is an emerging field and new ground is being broken
across the area of study.

15 | CMU/SEI-2008-TN-017

5 Conclusions

Despite the drawbacks associated with volatile memory analysis, it is the authors’ opinion that
volatile memory analysis will be integral to the digital investigation process going forward. Based
on current technologies, the best approach is a hybrid based on situational awareness and a triage
mentality. This same triage mentality is aptly demonstrated by emergency medical personnel
when dealing with multiple casualties. For instance, the EMT must make a rapid assessment of
accident victims before deciding on the priority and type of treatment. Instead of being used to
gather exhaustive amounts of data, live response should move to a triage role, collecting just
enough information to determine the next appropriate step. Full memory analysis (and the
requisite memory acquisition) should be used to augment and supplement traditional digital
forensic examination when greater understanding of the running state of the machine is critical to
resolving the case. In other words, no response scenario will be identical, so it is impractical to
build rigid procedures and checklists for use in the field.

!
/
NOLLOETHILY ON

| SSOTVIVA ITAVIOA |
w
B

Figure 16: Hybrid approach

Rather, an informed policy should be developed that takes into consideration the various types of
scenarios that may necessitate a live response, memory acquisition, or simple power-off. This
approach falls somewhere between a typical law enforcement response and the techniques used by
IT staff during incident response.

16 | CMU/SEI-2008-TN-017

Figure 2 illustrates the nature of the “middle ground” approach. In one example, live system
investigation may be necessary to determine the presence of mounted encrypted containers or full-
disk encryption. If detected, the examiner would then switch to capturing a memory image for off-
line analysis (as well as capturing the data in an unencrypted state). A memory image allows for
the application of analysis tools, now or later, which can extract valuable cryptographic material.

17 | CMU/SEI-2008-TN-017

18 | CMU/SEI-2008-TN-017

References

URLSs are valid as of the publication date of this document.

[SysInternals]
http://technet.microsoft.com/en-us/sysinternals/default.aspx

[Volatility]
https://www.volatilesystems.com/default/volatility

[PTFinder]
http://computer.forensikblog.de/en/2007/11/ptfinder_0_3_05.html

[Walters 2007]
Walters A. & Petroni N. Volatools: Integrating Volatile Memory Forensics into the Digital
Investigation Process Black Hat. DC 2007. February 2007.

19 | CMU/SEI-2008-TN-017

20 | CMU/SEI-2008-TN-017

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to

the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES
COVERED
(Leave Blank) August 2008
Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Computer Forensics: Results of Live Response Inquiry vs. Memory Image Analysis FA8721-05-C-0003
6. AUTHOR(S)
Cal Waits, Joseph Ayo Akinyele, Richard Nolan, Larry Rogers
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2008-TN-017
Pittsburgh, PA 15213
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

AGENCY REPORT NUMBER

Error! No text of specified
style in document.

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

128 DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

People responsible for computer security incident response and digital forensic examination need to continually update their skills, tools,
and knowledge to keep pace with changing technology. No longer able to simply unplug a computer and evaluate it later, examiners
must know how to capture an image of the running memory and perform volatile memory analysis using various tools, such as PsList,
ListDLLs, Handle, Netstat, FPort, Userdump, Strings, and PSLoggedOn. This paper presents a live response scenario and compares

various approaches and tools used to capture and analyze evidence from computer memory.

14. SUBJECT TERMS

computer security, incident response, computer forensics, volatile memory analysis, live
response

15.

NUMBER OF PAGES
31

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

uL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Computer Forensics: Results of Live Response Inquiry vs. Memory Image Analysis
	Table of Contents
	List of Figures
	Abstract
	Introduction
	1 Scenario
	2 Live Response
	3 Volatile Memory Analysis
	4 Analysis
	5 Conclusions
	References

